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A Simple Method for Analyzing
Fin-Line Structures
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Abstract—A first-order design theory for fin-line circuits is developed
by establishing a correspondence between a fin line and a set of rectangu-
lar waveguides. The usefulness of the method is demonstrated by applying
it to the analysis of a transition from a fin line to a below-cutoff
waveguide. Finally, theoretical and experimental results are given for a
bandpass filter, which show a fairly good agreement.

I. INTRODUCTION

HE INTEGRATED fin line is an advantageous

alternative to the microstrip in the design of micro-
wave integrated circuits at frequencies above 20 GHz [1}.
The only theoretical approaches being available until now
are those of [2] and [3], which both deal with dispersion of
the phase coefficient and of the wave impedance. While
the first paper requires extensive and complicated
mathematics, which makes the method cumbersome if it is
applied to an analysis of fin-line structures with a varying
slot pattern, the second paper does not show any way to
calculate the field distributions in the cross section of the
waveguide. There is, hence, a need for a first-order design
theory as it already exists for microstrip circuits, which
allows analyzing even complex fin-line structures with a
limited effort. The present work shall fill this gap.

Our aim is to present an equivalent description of fin-
line circuits, which establishes a one-to-one correspon-
dence between the field expansion in a rectangular wave-
guide homogeneously filled with dielectric and in a fin
line. It will be shown that the knowledge of only one
group of eigenmodes (the TE,, modes) is sufficient to
analyze a wide class of fin-line circuits with a varying slot
pattern. Concerning these modes the fin line can be de-
scribed by equivalent rectangular waveguides.

The investigations to be presented are fourfold. In
Section II, the complete eigenmodes of fin lines of arbi-
trary configurations will be derived. Based on this field
expansion, the transition from a fin line to a rectangular
waveguide, which is separated by the closed slot of a fin
line in two parts being below cutoff, is analyzed in Section
III. By matching the various tangential field components
at the interface, the TE,,;, modes of the fin line (which are,
of course, different from the TE,,, modes of a rectangular
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waveguide) turn out to be the only components which
determine the transmission and reflection coefficient of
the transition. This forms the foundation for Section 1V,
where directions will be given on how to replace a fin line
by an equivalent set of rectangular waveguides. Analysis
of the same transition as in Section III using this equiv-
alent description then yields identical results. Finally,
Section V is devoted to a discussion of the validity of the
method.

II. FIN-LINE FIGENMODES

The eigenvalues of a fin line will now be calculated for
the cross section of Fig. 1. The configuration is regarded
at the cutoff frequency where it forms a paraliel-plate
waveguide which is short-circuited at x=0 and x=a. The
dielectric substrate with its metal fins can be regarded as a
discontinuity between the parallel plates. Such step dis-
continuities have been analyzed approximately for the
case of two infinitely long transmission lines in [4] by
neglecting any frequency dependence of the phase con-
stants. We will solve the problem accurately by expanding
the fields in the two regions A and B and by matching the
tangential field components at the interface.

The TE,,, modes with m odd will be regarded as an
example. Such a mode is characterized at cutoff by an E,
and an H, component. For region 4 one can write

E, = A, cos (k,,,y) sin (k.. x)

+ § 4, cos (k,,,») sin (k,,,x) (1)
pFn
H,4=A4,Y, cos (k,..p) c0s (Kypyx)
+ z 4,7, cos (k,,,y) cos (k,,,x) )
PFn

and in region B
EyB = Bn €Oos (kynB(y - b])) €os (kxmB(a/z_ 'x))
+ 2 B: Cos (kysB(y - bl)) cos (kst(a/z_x)) (3)

S¥n
HzB=Bn YB COs (kynB(y _bl)) sin (kxmB(a/z_x))

+ X BgY,p cos (k,,z(y — b)) sin (k,,5(a/2— x)).
s¥#n
C))

The various constants in (1)-(4) read
kwa=nn/b k,,=pn/b
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Cross section of a fin line.
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(5)

A =27/ k., is the cutoff wavelength of the structure.
The boundary conditions at x=1/2=(a—c)/2 read

E, =E, H,=H_gath <y<b+d
E, =0at0<y<b, b +d<y<b. (6)

Equation (6) yields the characteristic equation

Yp/d tan (k,,gc/2)=Y,/b cot (k. )¢(n,n)
+ Pén Y,./b cot (kpr De(p,n) (7)

where ¢(n,n) and ¢(p,n) must be calculated from the
following system of linear equations:

¢(t’n)=ktn+Fl(t’n)¢(n7n)+ 2 Fz(t,n,p)qb(p,n),

pFn

1=1,2,---. (8)

The quantities k,,, Fi(t,n), and F,(¢,n,p) depend on e,
k... and the dimensions of the fin-line cross section.
The eigenvalues %, can now be calculated by solving
the characteristic equation. A similar procedure must be
undertaken for m even and for the TM,,,, modes.

The foregoing analysis is based on a suggestion of Cohn
for calculating the eigenvalues of ridge waveguides [5]. It
can be modified to include the case of unilateral fin lines
(with metal fins covering only one side of the substrate)
according to the calculations in [6] for slot lines, because a
unilateral fin line is similar to a boxed-in slot line.

The eigenvlaue approach shall now be used to construct
the fin-line eigenmodes. To proceed in this, we must
remember that the propagating waves in fin lines are
neither TE nor TM but a combination of both. This is due
to the dielectric substrate of integrated fin lines (see the
cross section in Fig. 1). It is impossible to simultaneously
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match all the field components of either a TE or a TM
mode in the slot interface between regions 4 and B except
at cutoff frequency and for perfectly conducting walls [7].

Since the hybrid eigenmodes of the fin line contain TE
and TM terms, they will be classified in the following
way. An HE mode indicates a hybrid eigenmode, in which
the TE part is much larger than the TM part. When the
frequency approaches its cutoff value, the TM part
vanishes and the HE mode becomes purely TE. An EH
mode indicates a hybrid eigenmode with a dominating
TM part. Now the TE part vanishes at cutoff.

From the foregoing analysis, we know both the TE and
TM modes at cutoff. In order to extend this solution
beyond this frequency, we will utilize the fact that the
ratio between the TE and TM parts in an hybrid eigen-
mode primarily depends on the magnitude of the dielec-
tric constant ¢, and on the substrate thickness c¢. For
moderate €, and ¢/a<1, the dielectric plays a minor role
[1] so that the eigenmodes may be considered to be either
TE or TM. This holds exactly for the fin line of Konishi,
which equals a ridge waveguide with a thin ridge [8]. Our
calculations will henceforth be restricted to the case that €,
is moderate and ¢/a< 1. Equations (1)—(6) are then ap-
proximate expressions for the HE modes of a bilateral fin
line. Slightly modified relations hold in the case of a
unilateral fin line which can be ‘deduced utilizing the
results in [6].

A characteristic quantity of fin-line eigenmodes is the
effective dielectric constant k,,,, which has been defined

emn’®
in [1] as the squared ratio of the cutoff wave numbers k_,,,
in the case of an air-filled fin line to that of the original
fin line with the dielectric substrate between the fins. In
order to calculate the effective dielectric constant k,,,,,, the
characteristic equation has been solved twice—a first time
for ¢, =1 and a second time for ¢, =2.22 (RT-duroid as

substrate material). k,,,, is then given by [1], [3] as

kemn = kc2mn(€r = 1)/k3mn(€r = 2'22)' (S))

The effective dielectric constant depends only very weakly
on frequency, as has been shown in [2]. Hence the propa-
gation constant can be written as

k2 = kemnk2 - kfmn(ir = 1)

zmn

(10
where k?=w?ue and k,,,, is taken from the relation above.
With (9) and (10) the solution for the fin-line eigen-
modes has been completed. Its basic assumptions are the
moderate €, c¢/a<1, and the k,,, constant versus the
frequency. The first two are well fulfilled for usually used
fin lines; the third holds according to the numerical re-
sults in [2]. The eigenmode approach presented here hence
is believed to form a basis for a first-order design theory
for fin-line circuits. A similar though approximate attempt
to the solution of this problem has already been given in
[7}, where the tangential electric field at the interface has
been matched while the magnetic field has not.
Numerical results are shown for the TE,,, fin-line mode

in Fig. 2.
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‘{5 F EjF=A,, sin (rmx /1) cos (gny /b) exp (— Jk.p,z) (14)
kemo kemo TE __
1.2 3 Hx2 = rqu’gE (15)
M - and by a TM term, which is identical to the TE term with
o8 |, one exception. Y, has to be replaced by Y;,. The various
' { constants read
04 1 - kzrq/(w""‘) leq = —we/kz,q
2 2__12_.,.2
‘ ) kzz,q+(r77/1) +(qn/b) =k*=wpe. (16)
0 & 10 1% 18 = 20

Based on (11)-(16), the total fields are given by

Fig. 2. Effective dielectric constant k,,, and wave number ko for

TE, o modes versus m. The dimensions of the fin line are a=15.8 mm, ¢ . ETE
=1 =1, , by=3. , ¢=0. d e =222 vyl | _ .+ TE 1

d=1.58 mm, =179 mm, b;=3.16 mm, ¢c=0.3 mm, and ¢, = 2 Amn(fmoiRmn exp (zjkzmnz)) '
Hxl m=1n=0 Hxl

in region 1 with ¢,,=1 for m=1 and 0 otherwise, and
z

e é// /@{/Al + _§= AR, exp (ZkamhﬁZ){iT;.h:{} (17)
@ i ST TX ] | .
6 1

w t ) ETE
Fig. 3. Slot pattern of a metallic strip in a fin line. = Y 4,(1xR exp (2KIE))] 7 -
x2 r=1,g=0 x2
] E’IZ‘M
III. METALLIC STRIP IN A FIN LINE + X A (1+R), exp (2jkIM2)) I;TM
=1,q=1
The eigenmodes of the fin line being known, the transi- T 2
tion from a fin line to a below-cutoff waveguide (which is (18)
realized by short-circuiting the slot between the fins) and in region 2, and
back to another fin line can be analyzed. The correspond-
. D . . . E? ) ETE 0 ETM
ing slot pattern on the fin-line substrate is shown in Fig. 3. v3 S o4 v3 o4 S y3 (19)
The discontinuity will, in general, excite all types of Hi| s=Ti=0 s HIE|  _Tie1 st HIM
eigenmodes in the three regions. The incidental wave in . .
region | is a TE,, mode. i region 3. . .
It can be shown that it suffices to match all of the E,
EF= (AO sin (k,q;x) and H, components across the boundary planes z=0 and

‘ ' z=w. The other total field components then are matched,
+ 34, cos (pry/b) sin (kyx)) exp (—jko2),  likewise 5].

for0<x< 1 0<y<h The boundary conditions read
EJF=(By cos (k.n(a/2—x))+ 2 B, cos (sm(y—by)/d)  Ei=Ej  for0<x<1 Ej=0, for1<x<a/2
-cos (k,(a/2— x))) exp (—jk,102), H; =H/, for0O<x<landl1<x<a/2. (20)

for1<x<a/2 b <y<b,+d; (11) They must be applied at z=0 and z=w. Multiplying these
relations by sin (rmx/1) and integrating over the cross

TE _ TE
H."=Y\E, (12)  gection yields, e.g., at z=0,
with
2 2 (EmO + RmO)AmOA Ob
kai=kao kuaa=Ve ko ki +(pm/b) =k, m=13,5,:--

K+ (sm/d)’ =ekZg Yio=—ko/(wp).  (13) 'flsin (rax /1) sin (K, x) dx=(1+ R )A,b1/2
The excited waves in regions 1 and 3 consist of both :

TE,, and TM,,, terms. The E* component is given by 21

the expressions in (1) and (3) times exp (—jk,,,z), and R

HF=7,,E'F with Y, =—k,,./(0p). The TM compo- . 1§5,... (€0~ Rno) Aodo ¥ 10

nents of E, and H, have the same form as E, in (1) and .

(3) but with different constants. . f sin (rmx /1) sin (k,,,x) dx=(1—R4)A,,Y,4b1/2.
The electromagnetic field in region 2 can be described 0

by (22)
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Fig. 4. Transmission coefficient / and reflection coefficient » of a
metallic strip in a fin line versus the length w of the strip. Curves a:
dy=dy=3.1 mm, b;=4.77 mm, b;=0.03 mm. Curves b: d,=d;=b/2,
by=by=b/4. The common dimensions are a=15.8 mm, b=7.9 mm,
¢=0.3 mm, and ¢,=2.22,

Two similar equations can be obtained from the boundary
conditions at z=w. Thus the transmission and reflection
coefficients turn out to depend only on the TE,, mode of
the fin line. Other modes are averaged out. Theoretical
and experimental results for two different slot patterns are
shown in Fig. 4.

IV. A FIN-LINE EQUIVALENT

We are in a position now to introduce an equivalent for
a fin line. By regarding the expression for the guided
wavelength (n=0)

Ang = AO/ (kemO - O‘O/ >‘cm0)2)1/2

with a A, wavelength in free space, and by comparing it to
the one for the guided wavelength of the TE,,, mode in a
rectangular waveguide, one sees that the TE, , modes of a
fin line can be thought to be supported by a singularly
infinite set of rectangular waveguides having the broad
dimension g,,=mn/k,,, and being homogeneously filled
with a dielectric of permittivity k,,,,. This equivalence is
sketched in Fig. 5.

A first-order design theory for fin-line structures can
now be formulated based on this equivalence.

Assumptions: 1) The HE modes of a bilateral fin line
might be replaced by their TE parts as in Section II (i.e., €,
is moderate and c¢/a<1). 2) The geometry of the
boundary value problem allows neglecting all other modes
except the TE, , modes (as is, e.g., valid for the problem
treated in Section III).

Conclusion: The bilateral fin line might then be re-
placed by a singularly infinite set of rectangular wave-
guides having a broad dimension a,, and equal height b
and being homogeneously filled with a dielectric of per-
mittivity k,,, Each equivalent waveguide supports its

(23)
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Fig. 6. A fin-line equivalent applied to the problem of Fig. 3.
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Fig. 7. Equivalent waveguide width a,, of a fin line versus m. The
dimensions of the fin line are a=15.8 mm, d=1.58 mm, 5=7.9 mm,
b;=3.16 mm, ¢=0.3 mm, and ¢,=2.22.

dominant TE,, mode. Its parameters a, and k,,, are
related to the fin-line modes by the analysis of Section II.

This procedure leads to a considerable simplification in
the mathematics. It can be further simplified by using
closed form solutions for a,, and k,,, which have been
derived for m=1 in [3]. These formulas which can easily
be extended to cover the case of m#1 represent ap-
proximations with an error of less than 5 percent.

As an example, we will apply the fin-line equivalent to
the problem of a metallic strip in a fin line. Analyzing the
structure of Fig. 3 now means matching the tangential
field components between a set of rectangular wave-
guides, as has been shown for a fixed m in Fig. 6. The
total field in region 1 at z=0is given by

Ey’I;E = 2 (€m0 + RmO)AmO Sin (kmeX)
m=1,3,5,--

H/F= 1%5 (€10 = Rino) YinoAmo SN (Ko X)-
m=1,3,5,---

(24)

The various constants have been defined in Section IIL
Similarly, the total field in region 2 reads
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Fig. 8. Slot pattern of a bandpass filter and transmission coefficient ¢ and reflection coefficient r versus frequency f for various
strip widths. The dimensions of the fin line are a=15.8 mm, d=1.58 mm, 5=7.9 mm, b;=3.16 mm, c=0.3 mm, and ¢,=2.22.

EyTzE= > (1+R))Al sin (rox /1)
r=1,2,3,---

HE= 1223 (1—R,) YAl sin (rax/1).  (25)
r= 5 dey ’.. .

Matching the tangential field components at the interface
z=0, multiplying these equations by sin(k,,,x), and in-
tegrating over the cross section yields

(emO + RmO)AmObam/4

= 2

r=1,23,+"
. f Yin (rax /1) sin (k%) dx
0

(EmO - RmO)AmO YmObam/4

= 2 (I-RpALYpb
r=12,3, -

- 2 in (1) sin (ko) doe
0

(1+ Rjp)ALb

+ 2 A€ Ruo) Yo
m=1,3,5,---

[ 5in? (k) di. (26)
1/2

From these equations (and two similar ones at z=w)
the reflection and transmission coefficients can be calcu-
lated. The analytical results from (26) on one side and
from (21) and (22) on the other turn out to be identical,
indicating that the problem of a metallic strip across a fin

line can be completely described by the set of TE, ,
modes.

The second sum in the last of the two equations of (26)
represents the surface current density due to a discontinu-
ity in the magnetic field component H,. This term might
be simplified considerably by assuming a constant surface
current density, as is well known from similar problems
(see, e.g., [10]). The dependence of a,, on m is shown for
typical dimensions in Fig. 7. From this diagram a rapid
convergence of g, against a can be seen.

V. VALIDITY OF THE METHOD

In order to check the validity of the method, it has been
applied to different fin-line structures. In the case of a
discontinuity in the slot width, the method is no longer
exact, because in addition to the TE,,, modes other modes
have an influence on the transmission and reflection
coefficients. In most of the cases which have been in-
vestigated, the fin-line equivalent yielded results within
the measurement accuracy. This is also true for circuits
with unilateral fin lines. Work is in progress now to derive
analytical expressions for the error which has to be ex-
pected when applying the method to various classes of
problems.

Finally, a bandpass filter whose slot pattern is shown in
Fig. 8 has been designed using the fin-line equivalent. The
calculated and measured frequency response coincided
within a 5-percent error band with one exception. The
loaded Q factor of the transmission resonator showed
deviations of up to 40 percent between theory and
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measurements. This is due to the neglect of ohmic losses
in the calculations. The difficulty can be overcome, how-
ever, if the losses are taken into account according to the
guidelines given in [3].

VL

A fin-line equivalent has been developed, which is
thought to fill the gap for a first-order design theory. This
method reduces boundary value problems in complex
fin-line structures to the problem of matching the TE,,
modes between two sets of equivalent rectangular wave-
guides. Its usefulness has been checked by applying it to
the analysis of fin-line discontinuities and of a bandpass
filter.

CONCLUSIONS
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An X-Band Balanced Fin-Line Mixer

GUNTHER BEGEMANN

Abstract—The fin-line technique has been used in a balanced 9-11-
GHz mixer with a 70-MHz intermediate frequency. The mixer without an
IF amplifier has an available conversion loss of less than 5 dB with a
3.8-dB minimum and a SSB noise figure of less than 6.9 dB with a 5.3-dB
minimum. The mixer is tunable by variable shorts. It is possible to scale
the device to millimeter-wave frequencies.

I. INTRODUCTION

HIS PAPER describes the design and performance of

a microwave integrated-circuit (MIC) balanced mixer
that covers the bandwidth of 2 GHz within the X band
with available conversion losses of less than 5 dB and a
noise figure of less than 6.9 dB. Not included is the noise
contribution from the IF amplifier. The mixer operates
with an IF of 70 MHz, but the device is able to handle
higher IF’s up to some gigahertz. For this purpose, the
low-pass filter coupling out the intermediate frequency
must have a suitable cutoff frequency.
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In the circuit considered here, a fin-line technique [1]
has been used to realize a mixer which is capable to work
well up to millimeter-wave frequencies. To this end the
mixer is equipped with connections of rectangular wave-
guides both at the signal and the local oscillator input.

Because the fundamental mode of a fin-line (H,, mode)
is the same as the one of a rectangular waveguide, transi-
tions between these two guides are easy to handle and
have a very small insertion loss and a VSWR over the
entire waveguide bands. Parasitic radiation which often is
a problem connected with planar waveguides especially at
higher frequencies can be avoided. So the fin-line has very
low losses. Moreover, it offers the same possibilities of
integration as other planar circuits.

The most essential part of the mixer is a planar magic T
completely integrated in a rectangular waveguide. The
magic T proved itself as a rather broad-band and low-loss
device. The purpose of the magic T is twofold. First, it
distributes the signal and local oscillator voltages with
their proper phase relationships to the two nonlinear
elements, and, second, it blocks the local oscillator input
from the signal frequency input and vice versa.

0018-9480/78 /1200-1007$00.75 ©1978 IEEE



