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A Simple Method for Analyzing
Fin-Line Structures

ABDEL MEGID KAMAL SAAD AND KLAUS SCH~EMANN, MEMBER, IEEE

Abstracz-A fint-order desii theory for fii-lfne efrcaits is developed

by establishing a correspondence between a fii line aad a set of redaagu-
Iar wavegoides. The naefufness of the method is demonstrated by applying
it to the anafysis of a transition from a fii fine to a below-catoff
wavegukfe. Finally, theoretical aad experfmentaJ results are given for a

bandpass filter, which show a fairly good agreement.

I. INTRODUCTION

~ HE INTEGRATED fin line is an advantageous

1 alternative to the microstrip in the design of &cro-
wave integrated circuits at frequencies above 20 GHz [1].

The only theoretical approaches being available until now

are those of [2] and [3], which both deal with dispersion of

the phase coefficient and of the wave impedance. While

the first paper requires extensive and complicated

mathematics, which makes the method cumbersome if it is

applied to an analysis of fin-line structures with a varying

slot pattern, the second paper does not show any way to

calculate the field distributions in the cross section of the

waveguide. There is, hence, a need for a first-order design

theory as it already exists for microstrip circuits, which

allows analyzing even complex fin-line structures with a

limited effort. The present work shall fill this gap.

Our aim is to present an equivalent description of fin-

line circuits, which establishes a one-to-one correspon-

dence between the field expansion in a rectangular wave-

guide homogeneously filled with dielectric and in a fin

line. It will be shown that the knowledge of only one

group of eigenmodes (the TE~O modes) is sufficient to
analyze a wide class of fin-line circuits with a varying slot

pattern. Concerning these modes the fin line can be de-

scribed by equivalent rectangular waveguides.

The investigations to be presented are fourfold. In

Section II, the complete eigenmodes of fin lines of arbi-

trary configurations will be derived. Based on this field
expansion, the transition from a fin line to a rectangular

waveguide, which is separated by the closed slot of a fin

line in two parts being below cutoff, is analyzed in Section

III. By matching the various tangential field components

at the interface, the TEmo modes of the fin line (which are,

of course, different from the TEmo modes of a rectangular
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waveguide) turn out to be the only components which

determine the transmission and reflection coefficient of

the transition. This forms the foundation for Section IV,

where directions will be given on how to replace a fin line

by an equivalent set of rectangular waveguides. Analysis

of the same transition as in Section III using this equiv-

alent description then yields identical results. Finally,

Section V is devoted to a discussion of the validity of the

method.

II. FIN-LINE EIGENMODES

The eigenvalues of a fin line will now be calculated for

the cross section of Fig. 1. The configuration is regarded

at the cutoff frequency where it forms a parallel-plate

waveguide which is short-circuited at x = O and x = a. The

dielectric substrate with its metal fins can be regarded as a

discontinuity between the parallel plates. Such step dis-

continuities have been analyzed approximately for the

case of two infinitely long transmission lines in [4] by

neglecting any frequency dependence of the phase con-

stants. We will solve the problem accurately by expanding

the fields in the two regions A and B and by matching the

tangential field components at the interface.

The TE~~ modes with m odd will be regarded as an

example. Such a mode is characterized at cutoff by an EY

and an Hz component. For region A one can write

EY~ = A. cos (kYtiy) sin (kXtix)

+ ~ AP cos (kYP~y) sin (kXP~x) (1)
p #n

~zA = An Y~ COS(kytiy) COS(kX~x)

+ ~ Ap YP,4Cos (kypAy)COS
p#n

and in region B

Ey~ = Bn COS (kynB(y – b,)) COS (kX~~(a/2

kXP~X) (2)

x))

+ ~~~ B, COS (k,~~(y – bl)) COS (kX,~(a/2– X)) (3)

HZB = B. Y~ cos (k,fl~(y – b,)) sin (kxm~(a/2– x))

+ z BS KB cos (ky.~(y – b,)) sin (k..B(a/2– x)).
s+n

(4)

The various constants in (l)-(4) read

kymt = n~/ b kyP~=p~/b
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Fig. 1. Cross section of a fin line.

Acmn= 2r/kcw is the cutoff wavelength of the structure.
The boundary conditions at x=1/2= (a – c)/2 read

EYA= E,B H2A=HzBatb1<y<b1+d

EYA=Oat O<y<bl bl+d<y<b. (6)

Equation (6) yields the characteristic equation

Y./d tan (kx~~c/2) = YA/b cot (kx~ I)@(njn)

+ z ~,4 /b cot (kx,~ 1)41(P, n) (7’)
p #n

where +(n, n) and @(p, n) must be calculated from the

following system of linear equations:

+(t,n) = k,. + Fl(t,n)o(n,n) + z F2(t, n,p)+(p,n),
p+n

t=l,2,. . . . (8)

The quantities k,., Fl(t, n), and Fz(t, n,p) depend on c,,

k ,~fl, and the dimensions of the fin-line cross section.

The eigenvalues kc~~ can now be calculated by solving

the characteristic equation. A similar procedure must be

undertaken for m even and for the TMM. modes.

The foregoing analysis is based on a suggestion of Cohn

for calculating the eigenvalues of ridge waveguides [5]. It

can be modified to include the case of unilateral fin lines

(with metal fins covering only one side of the substrate)

according to the calculations in [6] for slot lines, because a

unilateral fin line is similar to a boxed-in slot line.
The eigenvlaue approach shall now be used to construct

the fin-line eigenmodes. To proceed in this, we must
remember that the propagating waves in fin lines are

neither TE nor TM but a combination of both. This is due

to the dielectric substrate of integrated fin lines (see the

cross section in Fig. 1). It is impossible to simultaneously

match all the field components of either a TE or a TM

mode in the slot interface between regions A and B except

at cutoff frequency and for perfectly conducting walls [7].

Since the hybrid eigenmodes of the fin line contain TE

and TM terms, they will be classified in the following

way. An HE mode indicates a hybrid eigenmode, in which

the TE part is much larger than the TM part. When the

frequency approaches its cutoff value, the TM part

vanishes and the HE mode becomes purely TE. An EH

mode indicates a hybrid eigenmode with a dominating

TM part. Now the TE part vanishes at cutoff.

From the foregoing analysis, we know both the TE and

TM modes at cutoff. In order to extend this solution

beyond this frequency, we will utilize the fact that the

ratio between the TE and TM parts in an hybrid eigen-

mode primarily depends on the magnitude of the dielec-

tric constant c, and on the substrate thickness c. For

moderate c, and c/a<< 1, the dielectric plays a minor role

[1] so that the eigenmodes maybe considered to be either

TE or TM. This holds exactly for the fin line of Konishi,

which equals a ridge waveguide with a thin ridge [8]. Om

calculations will henceforth be restricted to the. case that q

is moderate and c/a<< 1. Equations ( l)–(6) are then app-

roximate expressions for the HE modes of a bilateral fin
line. Slightly modified relations hold in the case of a

unilateral fin line which can be ~deduced utilizing the

results in [6].

A characteristic quantity of fin-line eigenmodes is the

effective dielectric constant ke~n, which has beeln defined

in [1] as the squared ratio of the cutoff wave numbers kC,~n

in the case of an air-filled fin line to that of the original

fin line with the dielectric substrate between the fins. l[n

order to calculate the effective dielectric constant k,~~, the

characteristic equation has been solved twice-a first time

for e,= 1 and a second time for c,= 2.22 (RT-duroid i~s

substrate material). ke~n is then given by [1], [3] as

k emn = rt:mn(q, = 1)/kjJc, = 2.22). (!1)

The effective dielectric constant depends only very weakly

on frequency, as has been shown in [2]. Hence the propa-

gation constant can be written as

where k== U2W and ke~n is taken from the relation above.

With (9) and (10) the solution for the fin-line eigerL-

modes has been completed. Its basic assumptions are the

moderate t,, c/a <<1, and the ke~n constant versus the

frequency. The first two are well fulfilled for usually used

fin lines; the third holds according to the numerical re-

sults in [2]. The eigenmode approach presented here hence

is believed to form a basis for a first-order design theory
for fin-line circuits. A similar though approximate attempt

to the solution of this problem has already been given in

[7], where the tangential electric field at the interface ham
been matched while the magnetic field has not.

Numerical results are shown for the TE~O fin-line mode

in Fig. 2,
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Fig. 2. Effective dielectric constant /cefl and wave mnnber /ccti for
TE.O modes versus m. The dimensions of the fin line area= 15.8 q
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Fig. 3. Slot pattern of a metallic strip in a fin line.

III. METALLIC STRIP IN A FIN LINE

The eigenmodes of the fin line being known, the transi-

tion from a fin line to a below-cutoff waveguide (which is

realized by short-circuiting the slot between the fins) and

back to another fin line can be analyzed. The correspond-

ing slot pattern on the fin-line substrate is shown in Fig. 3.

The discontinuity will, in general, excite all types of

eigenmodes in the three regions. The incidental wave in

region 1 is a TEIO mode.

(Efl= xto sin (,kX1lx)

+ x Ap cos (Pv/b) sin (k.pIX))exp (–lqld),

for O<x<l ()<y</)

(E~ = B. cos (kX1z(a/2– x)) + ~ B, cos (w(y – bl)/dl)

ocos (kx,2(a/2 – x))) q ( –.jkzIoz),

forl<x<a/2 bl<y<bl+dl (11)

Iix;E = YIOEY:E (12)

with

k:$2 + (ST/dJ2 = crk:lo YIO= – kzlo/(~p). (13)

The excited waves in regions 1 and 3 consist of both

TE~~ and TMM terms. The EYTE component is given by

the expressions in (1) and (3) times exp ( –jkzmz), and

H;E = Y~nEY;E with Y = – kzJ(tip). The TM compo-
nents of EY and HX ha~e the same form as EY in (1) and

(3) but with different constants.

The electromagnetic field in region 2 can be described

by

E&=Ar, sin (rmc/1) cos (qny/b) exp (–jkzrqz) (14)

H~E = YrqEY;E (15)

and by a TM term, which is identical to the TE term with

one exception. Y,~ has to be replaced by Y~~. The various

constants read

Y,q = – kzrJ(@ Y;~ = – ac/kzrq

k:,, +(rn/1)2 + (qn/b)2= k2=ti2pe (16)

Based on (1 1)–(16), the total fields are given by

in region 1 with ~. = 1 for m= 1 and O otherwise, and

(18)

in region 2, and

in region 3.

It can be shown that it suffices to match all of the EY

and HX components across the boundary planes z = O and

z = w. The other total field components then are matched,

likewise [5].

The boundary conditions read

E;, =Et
J@ for O<x< 1 Ejl=O, for 1 <x<a/2

H;l = H;2, for O<x< 1 and l<x<a/2. (20)

They must be applied at z = O and z = w. Multiplying these

relations by sin (rTx/ 1) and integrating over the cross

section yields, e.g., at z = O,

~= ,;5 “me+‘mO)~mI.#ob,>, . . .

~lsin(mx/l)sin( kX~,x)dx=(l+RN)Aflbl/2
o

(21)

~ ($nO- Rno)4ndoy,ob
m=l,3 ,5,...

~’sin(~~x/l)sin(k.~,x)~x=(l-R~)A~y~bl
o

(22)
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Fig. 4. Transmission coefficient t and reflection coefficient r of a
metallic strip in a fin line versus the length w of the strin. Curves a:
dl =d3=3.1”rnq b] =4.77 mm, b3=0.03 “m. Curves b: i1=ti3=b/2,
b,= b3 = b/4. The common dimensions are a = 15.8 mm, b= 7.9 mm,
c= 0.3 mm, and e,= 2.22,

Two similar equations can be obtained from the boundary

conditions at z== w. Thus the transmission and reflection

coefficients turn out to depend only on the TE~O mode of

the fin line. Other modes are averaged out. Theoretical

and experimental results for two different slot patterns are

shown in Fig. 4.

IV. A FIN-LINE EQUIVALENT

We are in a position now to introduce an equivalent for

a fin line. By regarding the expression for the guided

wavelength (n= O)

Agmo=Ao/(kemo–(Ao/AcJ2)”2(23)

with a & wavelength in free space, and by comparing it to

the one for the guided wavelength of the TE~O mode in a

rectangular waveguide, one sees that the TE~O modes of a

fin line can be thought to be supported by a singularly

infinite set of rectangular waveguides having the broad

dimension am= m~/kC~O and being homogeneously filled

with a dielectric of permittivity k=~O. This equivalence is

sketched in Fig. 5.

A first-order design theory for fin-line structures can

now be formulated based on this equivalence,

A.s,sumpfions: 1) The HE modes of a bilateral fin line

might be replaced by their TE parts as in Section II (i.e., c,

is moderate and c/a<< 1). 2) The geometry of the

boundary value problem allows neglecting all other modes

except the TEnO modes (as is, e.g., valid for the problem

treated in Section III).
Conclusion: The bilateral fin line might then be re-

placed by a singularly infinite set of rectangular wave-

guides having a broad dimension am and equal height b

and being homogeneously filled with a dielectric of per-

mittivity ke~w Each equivalent waveguide supports its
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Fig. 5. A fin-line equivalent.
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Fig. 6. A fin-fine equivalent applied to the problem of Fig. 3.
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Fig. 7. Equivalent waveguide width am of a fin line versus m. The
dimensions of the fin line are a= 15.8 mm, d= 1.58 mm, b= 7.9 rnmj
b1=3.16 mm, c=O.3 mm, and c,=2.22.

dominant TEMO mode, Its parameters am and ke~O are

related to the fin-line modes by the analysis of Section 1[1.

This procedure leads to a considerable simplification in

the mathematics. It can be further simplified by using

closed form solutions for am and ke~o, which have been

derived for m = 1 in [3]. These formulas which can easily

be extended to cover the case of m # 1 represent ap-

proximations with an error of less than 5 percent.

As an example, we will apply the fin-line equivalent to

the problem of a metallic strip in a fin line. Analyzing the

structure of Fig. 3 now means matching the tangential

field components between a set of rectangular wave-

guides, as has been shown for a fixed m in Fig. 6. The

total field in region 1 at z = O is given by

EY~E= ~= ,~, (%+ RA&Lo sin (kXnox)
,, >...

HX~ .
~= ,7,,,. (’no-&J Ym#mo sin (~xm,,x),

,,,

(24)

The various constants have been defined in Section 111.

Similarly, the total field in region 2 reads
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Fig. 8. Slot pattern of a bandpass filter and transmission coefficient t and reflection coefficient r versus frequency ~ for various
strip widths. The dimensions of the fin line area= 15.8 mm, d= 1.58 mm, b =7.9 mm, b, =3.16 mm, c=O.3 mm, and c, =2.22.

Efl= ~ (1+ R~)A~ sin (rmt/1)
r-= 1,2,3,...

HJE= ,=1~, (1 - R~)Y&4~ sin (rzw/1). (25)
>>, ..’

Matching the tangential field components at the interface

z = O, multiplying these equations by sin(kXnOx), and in-

tegrating over the cross section yields

(%+ &J40~%/4

= ~ (1+ R~)A~b
r=l,2,3,. . .

= ,=,;3 (l-R~)A~Y~b
,>, . . .

-J1’2sin(~~x/l)sin(~xmO~)~x
o

+ ~ Amo(cmo- l?mo)YmlJ
m=l,3 ,5,...

/

am/2
sin’ (kX~ox) dx. (26)

1/2

From these equations (and two similar ones at z = w)

the reflection and transmission coefficients can be calcu-

lated. The analytical results from (26) on one side and

from (21) and (22) on the other turn out to be identical,

indicating that the problem of a metallic strip across a fin

line can be completely described by the set of TEmo
modes.

The second sum in the last of the two equations of (26)

represents the surface current density due to a discontinu-

ity in the magnetic field component HX. This term might

be simplified considerably by assuming a constant surface

current density, as is well known from similar problems

(see, e.g., [10]). The dependence of am on m is shown for

typical dimensions in Fig. 7. From this diagram a rapid

convergence of am against a can be seen.

V. VALIDITY OF THE METHOD

In order to check the validity of the method, it has been

applied to different fin-line structures. In the case of a

discontinuity in the slot width, the method is no longer

exact, because in addition to the TEno modes other modes

have an influence on the transmission and reflection

coefficients. In most of the cases which have been iti-
vestigated, the fin-line equivalent yielded results within

the measurement accuracy. This is also true for circuits

with unilateral fin lines. Work is in progress now to derive

analytical expressions for the error which has to be ex-

pected when applying the method to various classes of

problems.

Finally, a bandpass filter whose slot pattern is shown in

Fig. 8 has been designed using the fin-line equivalent. The

calculated and measured frequency response coincided

within a 5-percent error band with one exception. The

loaded Q factor of the transmission resonator showed

deviations of up to 40 percent between theory and
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measurements. This is due to the neglect of ohmic losses application; in Proc. Int. Microwave Conf. (San Diego, CA), 1977,

in the calculations. The difficulty can be overcome, how-
Pp. 381-384.

[3] A. M. K. Saad and G. Begemann, “Electrical performance of fin
ever, if the losses are taken into account according to the lines of various configurations: Inst.Elec. Eng. J. Microwacles,

guidelines given in [3]. Opt., Acoust,, vol. l,pp.81-88, Jan. 1977.
[4] J. R. Whinnery and H. W. Jamieson, “Equivalent circuits jfor

VI. CONCLUSIONS discontinuities in transmission lines,” in Proc. ZRE, vol. 32, pp.
98-114, 1944.

A fin-line equivalent has been developed, which is

thought to fill the gap for a first-order design theory. This

method reduces boundary value problems in complex

fin-line structures to the problem of matching the TEmO

modes between two sets of equivalent rectangular wave-

guides. Its usefulness has been checked by applying it to

the analysis of fin-line discontinuities and of a bandpass

filter.
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An X-Band Balanced Fin-Line Mixer
G~THER BEGEMANN

Abstract—The fin-line technique has been used in a bafanced !Lll-

GHz mixer with a 70-MHz intermediate frequency. The mixer without an

IF amplifier haa an available conversion loss of less than 5 dll with a

3.8-dB minimum and a SSB noise figure of less than 6.9 dB with a 5.3-dB

minimmn. The mixer is humble by variable shorts. It is possible to scafe

the device to milfiieter-wave frequencies.

I. INTRODUCTION

T HIS PAPER describes the design and performance of

a microwave integrated-circuit (MIC) balanced mixer

that covers the bandwidth of 2 GHz within the X band

with available conversion losses of less than 5 dB and a

noise figure of less than 6.9 dB. Not included is the noise

contribution from the IF amplifier. The mixer operates

with an IF of 70 MHz, but the device is able to handle

higher IF’s up to some gigahertz, For this purpose, the

low-pass filter coupling out the intermediate frequency

must have a suitable cutoff frequency.
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In the circuit considered here, a fin-line technique [1]

has been used to realize a mixer which is capable. to work

well up to millimeter-wave frequencies. To this end the

mixer is equipped with connections of rectangular wave-

guides both at the signal and the local oscillator input.

Because the fundamental mode of a fin-line (Hlo mode)

is the same as the one of a rectangular waveguidle, transi-

tions between these two guides are easy to handle and

have a very small insertion loss and a VSWR over the

entire waveguide bands. Parasitic radiation which often is

a problem connected with planar waveguides especially at

higher frequencies can be avoided. So the fin-line has vely

low losses. Moreover, it offers the same possibilities of

integration as other planar circuits.

The most essential part of the mixer is a planar magic ‘T

completely integrated in a rectangular waveguide, ‘The

magic T proved itself as a rather broad-band andl low-loss

device. The purpose of the magic T is twofold. First, it

distributes the signal and local oscillator voltages with

their proper phase relationships to the two nonlinear

elements, and, second, it blocks the local oscillator input

from the signal frequency input and vice versa.
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